

RESIDENTIAL DEVELOPMENT AT SANDRINGHAM ROAD, CHEADLE HULME

VALIDATION REPORT

Client:

Wiggett Construction Ltd. Viking House 449 Middleton Road Chadderton Oldham OL9 9LB Consultant:

Build Vision Ltd Consulting Engineers Suite 1, Westleigh House Wakefield Road Denby Dale Huddersfield HD8 8QJ

Job No: 1037 September 2013

CONTENTS

- 1. INTRODUCTION
- 2. REMEDIATION STRATEGY
- 3. VALIDATION
- 4. CONCLUSIONS

Appendices:

APPENDIX A: CAPPING LAYERS

APPENDIX B: GAS PROTECTION MEASURES

1 <u>INTRODUCTION</u>

1.1 The WML Consulting Ltd Geo-Environmental Investigation and Assessment Report Ref: 5062G/02, dated February 2012 and the Build Vision Consulting Engineers Remediation Strategy Report, dated October 2012 should be referred to for further information.

2 REMEDIATION STRATEGY

- 2.1 The site investigation identified up to 450mm of topsoil and ash fill made ground over clay drift deposits.
- 2.2 Chemical analysis has determined that topsoil and sub-soil at the site are not contaminated and thus suitable for re-use within the proposed development. Where topsoil is to be re-used it should be stockpiled separately from other construction materials and covered to prevent mixing with other soil.
- 2.3 The level of contamination within the ash fill renders this material unsuitable for use in garden areas. Where it cannot be re-used beneath hard paved areas it should either be removed or capped by minimum 600mm capping layers to gardens, comprising minimum 150mm granular capillary break layer and the remainder as 'inert' subsoil and/or topsoil.
- 2.4 If the ash fill is removed, validation on site by inspection of the clay formation and photographs should be taken by an Engineer and waste transfer notes provided.
- Validation sampling of any imported material will be required and should comprise 1 sample per 50m³ of topsoil and subsoil with 3 no. samples minimum of any source of material.
 Delivery tickets and waste transfer notes will be required for all material imported and disposed off site.
- 2.6 The gas monitoring results fall into CS1, however as only three gas monitoring readings were taken and water levels in the standpipes were high, it would be prudent to incorporate gas protection measures in accordance with CS2 and NHBC Amber 1 from BS 8485 in the substructure design. For residential, a score of 3 is required, this can be achieved by providing the following gas protection measures:-
 - § Pre-cast beam and block floors with low permeability gas membranes with taped joints and sealed entries using specialist approved gas prevention tape and underfloor ventilated void or vented layer as shown on the foundation drawings in Appendix B.

2.7 Validation of the installation of the gas membrane will be required with photographic evidence of gas taped sealed joints/entries and/or certificates of inspection by a specialist.

3 VALIDATION

- 3.1 The finished floor levels for Plots 1 to 2 were elevated and therefore 600mm capping layers were provided in the garden areas. However, for Plots 3 to 6 the floor levels were lower and the ash fill was removed and clay was present in the garden areas, therefore only 300mm of topsoil was provided above the clay. Waste transfer notes for the material removed from site are enclosed in Appendix A.
- 3.2 Topsoil was imported on to the site for the garden areas from a site at Foden Bank Farm in Lower Withington, near Chelford. Waste transfer notes for the transfer of the topsoil are enclosed in Appendix A.
- 3.3 Build Vision Consulting Engineers obtained 3 no. samples from the topsoil at Foden Bank Farm.
- 3.4 The samples were tested for a general suite of contaminants, the results were analysed and were all below Residential Tier 1 assessment values, and therefore the topsoil was considered suitable for use in the capping layers. The test results and analysis are enclosed in Appendix A.
- 3.5 Build Vision validated the capping layers in three locations to a depth of 600mm confirming 450mm of topsoil over 150mm of stone in the gardens of Plot 1 to 2 and 300mm of topsoil over the clay formation in the gardens of Plots 3 to 6. The validation location plan and photos are enclosed in Appendix A.
- 3.6 Gas protection measures have been provided in accordance with CS3/Amber2 from BS8485 as shown on the foundation drawings enclosed in Appendix B.

4 <u>CONCLUSIONS</u>

4.1 The remediation measures carried out have reduced the risk to end user receptors from the source of the contamination and landfill gases by removing the source and effectively eliminating the pathway of direct contact/ingestion and migration.

APPENDIX A

CAPPING LAYERS

- **§** Validation Location Plan
- **§** Validation Photos
- **§** Topsoil Assessment
- **§** Contamination Test Results
- § Contaminant Analysis
- **§** Human Health GAC's
- § Residential 1% GAC's assessment
- **§** Waste Transfer Notes for removal of fill
- **§** Waste Transfer Notes for topsoil

Trial Pit 1

Trial Pit 2

Job No: 1037 September 2013

Trial Pit 3

Job No: 1037 September 2013

Scientific Analysis Laboratories Ltd Certificate of Analysis

Hadfield Street Cornbrook Manchester M16 9FE

Hadfield House

Tel: 0161 874 2400 Fax: 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 306053-1

Date of Report: 06-Dec-2012

Customer: Build Vision Ltd

Suite 1

Westleigh House Wakefield Road Denby Dale Huddersfield HD8 8QJ

Customer Contact: M/S Sarah Griggs

Customer Job Reference: 1041/SJG/PG

Customer Site Reference: Foden Farm, Chelford

Date Job Received at SAL: 28-Nov-2012 Date Analysis Started: 28-Nov-2012 Date Analysis Completed: 06-Dec-2012

The results reported relate to samples received in the laboratory

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

This report should not be reproduced except in full without the written approval of the laboratory

Tests covered by this certificate were conducted in accordance with SAL SOPs

All results have been reviewed in accordance with QP22

Report checked and authorised by : Lianne Bromiley Project Manager Issued by : Lianne Bromiley Project Manager

1

SAL Reference: 306053

Project Site: Foden Farm, Chelford **Customer Reference:** 1041/SJG/PG

Soil Analysed as Soil

MCERTS Preparation

			SA	L Reference	306053 001	306053 002	306053 003
		Custon	ner Sampl	e Reference	1041 - TP1	1041 - TP2	1041 - TP3
			D	ate Sampled	Deviating	Deviating	Deviating
				Depth	0.2	0.2	0.2
				Туре	Sandy Soil	Sandy Soil	Sandy Soil
Determinand	Method	Test Sample	LOD	Units			
Moisture	T277	AR	0.1	%	15	12	13
Moisture @ 105 C	T162	AR	0.1	%	15	13	12

SAL Reference: 306053

Project Site: Foden Farm, Chelford

Customer Reference: 1041/SJG/PG

Soil Analysed as Soil

Build Vision Standard

			SA	L Reference	306053 001	306053 002	306053 003
		Custon	ner Sampl	le Reference	1041 - TP1	1041 - TP2	1041 - TP3
			D	ate Sampled	Deviating	Deviating	Deviating
				Depth	0.2	0.2	0.2
				Туре	Sandy Soil	Sandy Soil	Sandy Soi
Determinand	Method	Test Sample	LOD	Units			
Arsenic	T6	M40	2	mg/kg	8	5	<2
Boron (water-soluble)	T6	AR	1	mg/kg	<1	<1	<1
Cadmium	T6	M40	1	mg/kg	<1	<1	<1
Chromium	T6	M40	1	mg/kg	12	6	3
Chromium (trivalent)	T85	AR	2	mg/kg	12	6	3
Chromium VI	T6	AR	1	mg/kg	<1	<1	<1
Copper	T6	M40	1	mg/kg	25	19	6
Cyanide(Total)	T546	AR	1	mg/kg	<1	<1	<1
Lead	T6	M40	1	mg/kg	63	30	15
Mercury	T355	M40	0.001	mg/kg	0.001	0.001	<0.001
Nickel	T6	M40	1	mg/kg	11	7	3
pН	T7	AR			6.5	6.9	6.3
Phenols(Mono)	T546	AR	1	mg/kg	<1	<1	<1
Selenium	T6	M40	3	mg/kg	<3	<3	<3
SO4(Total)	T6	M40	0.01	%	0.08	0.05	0.02
SO4(2:1)	T6	AR	0.1	g/l	<0.1	<0.1	<0.1
Sulphide	T546	AR	1	mg/kg	<1	<1	<1
Zinc	T6	M40	1	mg/kg	71	59	29

SAL Reference: 306053

Project Site: Foden Farm, Chelford
Customer Reference: 1041/SJG/PG

Soil Analysed as Soil

BTEX, MTBE

			D	ate Sampled	Deviating	Deviating	Deviating
				Depth	0.2	0.2	0.2
				Туре	Sandy Soil	Sandy Soil	Sandy Soil
Determinand	Method	Test	LOD	Units			
Determinand	wethod	Sample	LOD	Units			
Methyl tert-Butyl Ether	T209	M105	10	μg/kg	<10	<10	<10
Benzene	T209	M105	10	μg/kg	<10	<10	<10
Toluene	T209	M105	10	μg/kg	<10	<10	<10
EthylBenzene	T209	M105	10	μg/kg	<10	<10	<10
M/P Xylene	T209	M105	10	μg/kg	<10	<10	<10
O Xylene	T209	M105	10	μg/kg	<10	<10	<10

SAL Reference 306053 001 306053 002 306053 003

 Customer Sample Reference
 1041 - TP1
 1041 - TP2
 1041 - TP3

SAL Reference: 306053 Project Site: Foden Farm, Chelford Customer Reference: 1041/SJG/PG Soil Analysed as Soil TPH SAL Reference 306053 001 306053 002 306053 003 1041 - TP3 Customer Sample Reference 1041 - TP1 1041 - TP2 Deviating Deviating Deviating Date Sampled Depth 0.2 0.2 0.2 Type | Sandy Soil | Sandy Soil | Sandy Soil Determinand Method LOD Sample TPH (C6-C10) M105 <0.10 <0.10 mg/kg TPH (C10-C21) M105 T8 mg/kg 3 TPH (C21-C40) T8 M105 mg/kg 18 23 12 Total Petroleum Hydrocarbons T8 M105 mg/kg 19 26 13

SAL Reference: 306053 Project Site: Foden Farm, Chelford Customer Reference: 1041/SJG/PG Analysed as Soil Total and Speciated USEPA16 PAH SAL Reference 306053 001 306053 002 306053 003 1041 - TP1 | 1041 - TP2 | 1041 - TP3 Customer Sample Reference Deviating Deviating Deviating **Date Sampled** Depth 0.2 0.2 0.2 Type Sandy Soil Sandy Soil Sandy Soil LOD Determinand Method Units Sample Naphthalene T207 M105 0.1 mg/kg <0.1 < 0.1 <0.1 T207 M105 Acenaphthylene 0.1 mg/kg < 0.1 < 0.1 < 0.1 Acenaphthene T207 M105 0.1 mg/kg <0.1 <0.1 <0.1 T207 M105 0.1 <01 Fluorene mg/kg < 0.1 < 0.1 Phenanthrene T207 M105 0.4 0.1 0.2 0.1 mg/kg Anthracene T207 M105 0.1 mg/kg <0.1 0.1 <0.1 T207 M105 0.3 Fluoranthene 0.1 0.6 1.4 mg/kg Pyrene T207 M105 0.3 mg/kg M105 Benzo(a)Anthracene T207 0.1 0.1 mg/kg 0.2 0.6 Chrysene T207 M105 0.1 mg/kg 0.2 0.5 0.1 M105 Benzo(b/k)Fluoranthene T207 0.1 mg/kg 0.4 1.0 0.3 T207 M105 0.5 <0.1 Benzo(a)Pyrene 0.1 0.2 mg/kg Indeno(123-cd)Pyrene T207 M105 0.1 mg/kg 0.1 0.3 <0.1 T207 M105 Dibenzo(ah)Anthracene 0.1 < 0.1 < 0.1 < 0.1 mg/kg Benzo(ghi)Perylene T207 M105 0.1 0.3 <0.1 mg/kg PAH(total) T207 M105 0.1 mg/kg 2.4 5.4 1.2

Index to symbols used in 306053-1

Value	Description
M105	Analysis conducted on an "as received" aliquot. Results are reported on a dry weight basis where moisture content was determined by assisted drying of sample at 105C
M40	Analysis conducted on sample assisted dried at no more than 40C. Results are reported on a dry weight basis.
AR	As Received
М	Analysis is MCERTS accredited
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Notes

The date of sampling has not been provided and therefore the time from sampling to analysis is unknown. It is possible therefore that the results provided may be compromised

Method Index

Value	Description
T355	CVAFS
T8	GC/FID
T209	GC/MS(Head Space)(MCERTS)
T162	Grav (1 Dec) (105 C)
T546	Colorimetry (CF)
T207	GC/MS(MCERTS)
T6	ICP/OES
T7	Probe
T277	Grav (1 Dec) (40 C)
T54	GC/MS (Headspace)
T85	Calc

Accreditation Summary

Methy star-Buy Eher	Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Foliage	Methyl tert-Butyl Ether	T209	M105	10	μg/kg	М	001-003
EthylBenzene	Benzene	T209	M105	10	μg/kg	М	001-003
MP Xylene T208 M105 10 μg/kg M 001-003 O Xylene T209 M105 10 μg/kg M 001-003 Arsenic T6 M40 2 mg/kg M 001-003 Boron (water-soluble) T6 AR 1 mg/kg N 001-003 Cadmium T6 M40 1 mg/kg M 001-003 Chromium (trivalent) T85 AR 2 mg/kg M 001-003 Chromium (trivalent) T86 AR 2 mg/kg M 001-003 Chromium VI T6 AR 1 mg/kg M 001-003 Copper T6 M40 1 mg/kg M 001-003 Maccury T355 M40 1 mg/kg M 001-003 Marcury T355 M40 0.001 mg/kg M 001-003 Nockel T6 M40 1	Toluene	T209	M105	10	μg/kg	М	001-003
O Xylene T209 M105 10 μg/kg M 001-003 Arsenic T6 M40 2 mg/kg M 001-003 Borne (water-soluble) T6 AR 1 mg/kg M 001-003 Chromium T6 M40 1 mg/kg M 001-003 Chromium (trivalent) T85 AR 2 mg/kg N 001-003 Chromium (trivalent) T85 AR 2 mg/kg N 001-003 Chromium (trivalent) T85 AR 2 mg/kg N 001-003 Chromium VI T6 AR 1 mg/kg N 001-003 Copper T8 M40 1 mg/kg M 001-003 Lead T6 M40 1 mg/kg M 001-003 Nickel T6 M40 1 mg/kg M 001-003 Nickel T6 M40 1	EthylBenzene	T209	M105	10	μg/kg	М	001-003
Arsenic T6 M40 2 mg/kg M 001-003 Boron (water-soluble) T6 AR 1 mg/kg N 001-003 Cadmium T6 M40 1 mg/kg M 001-003 Chromium (trivalent) T85 AR 2 mg/kg M 001-003 Chromium VI T6 AR 1 mg/kg N 001-003 Copper T6 M40 1 mg/kg N 001-003 Copper T6 M40 1 mg/kg M 001-003 Lead T6 M40 1 mg/kg M 001-003 Mercury T355 M40 0.001 mg/kg M 001-003 Mercury T355 M40 0.001 mg/kg M 001-003 PH T7 AR I mg/kg M 001-003 Selenium T6 M40 1 mg/kg M </td <td>M/P Xylene</td> <td>T209</td> <td>M105</td> <td>10</td> <td>μg/kg</td> <td>М</td> <td>001-003</td>	M/P Xylene	T209	M105	10	μg/kg	М	001-003
Boron (water-soluble)	O Xylene	T209	M105	10	μg/kg	М	001-003
Cadmium T6 M40 1 mg/kg M 001-003 Chromium T6 M40 1 mg/kg M 001-003 Chromium VI T6 AR 1 mg/kg N 001-003 Chromium VI T6 AR 1 mg/kg N 001-003 Copper T6 M40 1 mg/kg M 001-003 Copper T6 M40 1 mg/kg M 001-003 Lead T6 M40 1 mg/kg M 001-003 Mercury T3555 M40 0.001 mg/kg N 001-003 Mickel T6 M40 1 mg/kg M 001-003 Phenolik(Moro) T346 AR 1 mg/kg M 001-003 SO4(2-1) T6 A40 3 mg/kg M 001-003 SO4(2-1) T6 AR 0 1 mg/kg <t< td=""><td>Arsenic</td><td>T6</td><td>M40</td><td>2</td><td>mg/kg</td><td>М</td><td>001-003</td></t<>	Arsenic	T6	M40	2	mg/kg	М	001-003
Chromium	Boron (water-soluble)	T6	AR	1	mg/kg	N	001-003
Chromium (trivalent) T85 AR 2 mg/kg N 001-003 Chromium VI T6 AR 1 mg/kg N 001-003 Copper T6 AR 1 mg/kg M 001-003 Cyanide (Total) T546 AR 1 mg/kg M 001-003 Lead T6 M40 1 mg/kg M 001-003 Mercury T355 M40 0.001 mg/kg M 001-003 Nickel T6 M40 1 mg/kg M 001-003 PH T7 AR M0 01-003 Selenium T6 M40 3 mg/kg M 001-003 Selenium T6 M40 3 mg/kg M 001-003 SO4(2:1) T6 AR 1 mg/kg M 001-003 Sulphide T546 AR 1 mg/kg N 001-003	Cadmium	T6	M40	1	mg/kg	М	001-003
Chromium VI T6 AR 1 mg/kg N 001-003 Copper T6 M40 1 mg/kg M 001-003 Cyanide (Total) T546 AR 1 mg/kg M 001-003 Lead T6 M40 1 mg/kg M 001-003 Mercury T355 M40 0.001 mg/kg N 001-003 Nickel T6 M40 1 mg/kg M 001-003 PH T7 AR 1 mg/kg M 001-003 Phenols(Mono) T546 AR 1 mg/kg M 001-003 Selenium T6 M40 0.01 % M 001-003 SO4(2:1) T6 AR 0.1 g/l N 001-003 SO4(2:1) T6 AR 0.1 mg/kg N 001-003 SUPhide T546 AR 1 mg/kg N <	Chromium	T6	M40	1	mg/kg	М	001-003
Copper T6 M40 1 mg/kg M 001-003 Cyanide(Total) T546 AR 1 mg/kg M 001-003 Mercury T355 M40 0.001 mg/kg M 001-003 Nickel T6 M40 1 mg/kg M 001-003 PH T7 AR M 001-003 Phenols(Mono) T546 AR 1 mg/kg M 001-003 Selenium T6 M40 3 mg/kg M 001-003 Scl(2:1) T6 M40 3 mg/kg M 001-003 ScV4(2:1) T6 AR 0.1 gl N 001-003 Sulphide T546 AR 1 mg/kg N 001-003 Zinc T6 M40 1 mg/kg M 001-003 Acenaphthylene T207 M105 0.1 mg/kg M 001-003	Chromium (trivalent)	T85	AR	2	mg/kg	N	001-003
Cyanide(Total) T546 AR 1 mg/kg M 001-003 Lead T6 M40 1 mg/kg M 001-003 Mercury T355 M40 0.001 mg/kg N 001-003 Nickel T6 M40 1 mg/kg M 001-003 PH T7 AR M M 001-003 Selenium T6 AR 1 mg/kg M 001-003 SO4(Total) T6 M40 3 mg/kg M 001-003 SO4(2:1) T6 AR 0.1 g/l N 001-003 SUbhide T546 AR 1 mg/kg M 001-003 Zinc T6 AR 0.1 mg/kg N 001-003 Zinc T6 M40 1 mg/kg M 001-003 Aceraphthylene T207 M105 0.1 mg/kg M 001-003	Chromium VI	T6	AR	1	mg/kg	N	001-003
Cyanide(Total) T546 AR 1 mg/kg M 001-003 Lead T6 M40 1 mg/kg M 001-003 Mercury T355 M40 0.001 mg/kg N 001-003 Nickel T6 M40 1 mg/kg M 001-003 PH T7 AR M M 001-003 Selenium T6 M40 3 mg/kg M 001-003 SO4(Total) T6 M40 0.01 % N 001-003 SO4(2-1) T6 AR 0.1 g/l N 001-003 SUphide T546 AR 1 mg/kg N 001-003 Zinc T6 AR 0.1 g/l N 001-003 Zinc T6 M40 1 mg/kg N 001-003 Acenaphthylene T207 M105 0.1 mg/kg M 001-003	Copper	T6	M40	1		М	
Lead T6 M40 1 mg/kg M 001-003 Mercury T355 M40 0.001 mg/kg M 001-003 Nickel T6 M40 1 mg/kg M 001-003 pH T7 AR M 001-003 Phenois(Mono) T546 AR 1 mg/kg M 001-003 Sclenium T6 M40 3 mg/kg M 001-003 Scl4(7c1al) T6 M40 0.01 % N 001-003 ScV4(7c1al) T6 AR 0.1 g/l N 001-003 ScV4(2:1) T6 AR 1 mg/kg N 001-003 Sulphide T546 AR 1 mg/kg N 001-003 Sulphide T546 AR 1 mg/kg M 001-003 Acenaphthylene T207 M105 0.1 mg/kg M 001-003 <t< td=""><td></td><td>T546</td><td>AR</td><td>1</td><td></td><td>М</td><td>001-003</td></t<>		T546	AR	1		М	001-003
Mercury	• ' '	_		1			
Nickel T6	Mercury	T355	M40	0.001	mg/kg	N	001-003
pH T7 AR M 001-003 PhenoIs(Mono) T546 AR 1 mg/kg M 001-003 Selenium T6 M40 3 mg/kg M 001-003 SO4(Total) T6 M40 0.01 % N 001-003 SO4(2:1) T6 AR 0.1 g/l N 001-003 Sulphide T546 AR 1 mg/kg N 001-003 Zinc T6 M40 1 mg/kg M 001-003 Acenaphthylene T207 M105 0.1 mg/kg M 001-003 Fluorante T207 M105 0.1 mg/kg M <th< td=""><td>•</td><td>T6</td><td>M40</td><td></td><td></td><td>М</td><td></td></th<>	•	T6	M40			М	
Selenium T6 M40 3 mg/kg M 001-003 SO4(21) T6 M40 0.01 % N 001-003 SO4(21) T6 AR 0.1 g/l N 001-003 Sulphide T546 AR 1 mg/kg N 001-003 Zinc T6 M40 1 mg/kg M 001-003 Naphthalene T207 M105 0.1 mg/kg M 001-003 Acenaphthylene T207 M105 0.1 mg/kg U 001-003 Acenaphthylene T207 M105 0.1 mg/kg M 001-003 Fluoranthene T207 M105 0		+			<u>J</u>		
Selenium T6 M40 3 mg/kg M 001-003 SO4(21) T6 M40 0.01 % N 001-003 SO4(21) T6 AR 0.1 g/l N 001-003 Sulphide T546 AR 1 mg/kg N 001-003 Zinc T6 M40 1 mg/kg M 001-003 Naphthalene T207 M105 0.1 mg/kg M 001-003 Acenaphthylene T207 M105 0.1 mg/kg U 001-003 Acenaphthylene T207 M105 0.1 mg/kg M 001-003 Fluoranthene T207 M105 0	Phenols(Mono)	T546	AR	1	ma/ka	М	001-003
SO4(Total) T6 M40 0.01 % N 001-003 SO4(2:1) T6 AR 0.1 g/l N 001-003 Sulphide T546 AR 1 mg/kg N 001-003 Zinc T6 M40 1 mg/kg M 001-003 Naphthalene T207 M105 0.1 mg/kg M 001-003 Acenaphthylene T207 M105 0.1 mg/kg M 001-003 Acenaphthene T207 M105 0.1 mg/kg M 001-003 Fluorene T207 M105 0.1 mg/kg M 001-003 Phenanthrene T207 M105 0.1 mg/kg M 001-003 Anthracene T207 M105 0.1 mg/kg M 001-003 Fluoranthene T207 M105 0.1 mg/kg M 001-003 Pyrene T207 M105 0.1	, ,		M40	3			
SO4(2:1) T6 AR 0.1 g/I N 001-003 Sulphide T546 AR 1 mg/kg N 001-003 Zinc T6 M40 1 mg/kg M 001-003 Naphthalene T207 M105 0.1 mg/kg M 001-003 Acenaphthylene T207 M105 0.1 mg/kg M 001-003 Acenaphthylene T207 M105 0.1 mg/kg M 001-003 Fluorene T207 M105 0.1 mg/kg M 001-003 Phenanthrene T207 M105 0.1 mg/kg M 001-003 Phenanthrene T207 M105 0.1 mg/kg M 001-003 Phenanthrene T207 M105 0.1 mg/kg M 001-003 Fluorathene T207 M105 0.1 mg/kg M 001-003 Pyrene T207 M105 <		_					
Sulphide T546 AR 1 mg/kg N 001-003 Zinc T6 M40 1 mg/kg M 001-003 Naphthalene T207 M105 0.1 mg/kg M 001-003 Acenaphthylene T207 M105 0.1 mg/kg U 001-003 Acenaphthene T207 M105 0.1 mg/kg M 001-003 Fluorene T207 M105 0.1 mg/kg M 001-003 Phenanthrene T207 M105 0.1 mg/kg M 001-003 Phenanthrene T207 M105 0.1 mg/kg M 001-003 Anthracene T207 M105 0.1 mg/kg M 001-003 Fluoranthene T207 M105 0.1 mg/kg M 001-003 Pyrene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Anthracene T207 M105 </td <td>` '</td> <td>T6</td> <td></td> <td></td> <td></td> <td></td> <td></td>	` '	T6					
Zinc T6 M40 1 mg/kg M 001-003 Naphthalene T207 M105 0.1 mg/kg M 001-003 Acenaphthylene T207 M105 0.1 mg/kg U 001-003 Acenaphthene T207 M105 0.1 mg/kg M 001-003 Fluorene T207 M105 0.1 mg/kg M 001-003 Phenanthrene T207 M105 0.1 mg/kg M 001-003 Phenanthrene T207 M105 0.1 mg/kg M 001-003 Huoranthene T207 M105 0.1 mg/kg M 001-003 Pyrene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Anthracene T207 M105 0.1 mg/kg M 001-003 Benzo(b/k)Fluoranthene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Aryene T207 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Naphthalene T207 M105 0.1 mg/kg M 001-003 Acenaphthylene T207 M105 0.1 mg/kg U 001-003 Acenaphthene T207 M105 0.1 mg/kg M 001-003 Fluorene T207 M105 0.1 mg/kg M 001-003 Phenanthrene T207 M105 0.1 mg/kg M 001-003 Anthracene T207 M105 0.1 mg/kg M 001-003 Fluoranthene T207 M105 0.1 mg/kg M 001-003 Pyrene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Anthracene T207 M105 0.1 mg/kg M 001-003 Chrysene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Arlthracene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Pyrene T2	·	+					
Acenaphthylene T207 M105 0.1 mg/kg U 001-003 Acenaphthene T207 M105 0.1 mg/kg M 001-003 Fluorene T207 M105 0.1 mg/kg M 001-003 Phenanthrene T207 M105 0.1 mg/kg M 001-003 Anthracene T207 M105 0.1 mg/kg M 001-003 Fluoranthene T207 M105 0.1 mg/kg M 001-003 Pyrene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Anthracene T207 M105 0.1 mg/kg M 001-003 Chrysene T207 M105 0.1 mg/kg M 001-003 Benzo(b/k)Fluoranthene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Pyrene T207 M105 0.1 mg/kg M 001-003 Indeno(123-cd)Pyrene		+					
Acenaphthene T207 M105 0.1 mg/kg M 001-003 Fluorene T207 M105 0.1 mg/kg M 001-003 Phenanthrene T207 M105 0.1 mg/kg M 001-003 Anthracene T207 M105 0.1 mg/kg U 001-003 Fluoranthene T207 M105 0.1 mg/kg M 001-003 Pyrene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Anthracene T207 M105 0.1 mg/kg M 001-003 Chrysene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Byrene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Pyrene T207 M105 0.1 mg/kg M 001-003 Indeno(123-cd)Pyrene T207 M105 0.1 mg/kg M 001-003 Benzo(ghi)Perylene	•						
Fluorene T207 M105 0.1 mg/kg M 001-003 Phenanthrene T207 M105 0.1 mg/kg M 001-003 Anthracene T207 M105 0.1 mg/kg U 001-003 Fluoranthene T207 M105 0.1 mg/kg M 001-003 Pyrene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Anthracene T207 M105 0.1 mg/kg M 001-003 Chrysene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Byrene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Pyrene T207 M105 0.1 mg/kg M 001-003 Indeno(123-cd)Pyrene T207 M105 0.1 mg/kg M 001-003 Benzo(ghi)Perylene T207 M105 0.1 mg/kg M 001-003 Benzo(ghi)Perylene		_					
Phenanthrene T207 M105 0.1 mg/kg M 001-003 Anthracene T207 M105 0.1 mg/kg U 001-003 Fluoranthene T207 M105 0.1 mg/kg M 001-003 Pyrene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Anthracene T207 M105 0.1 mg/kg M 001-003 Chrysene T207 M105 0.1 mg/kg M 001-003 Benzo(b/k)Fluoranthene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Pyrene T207 M105 0.1 mg/kg M 001-003 Indeno(123-cd)Pyrene T207 M105 0.1 mg/kg M 001-003 Benzo(ghi)Perylene T207 M105 0.1 mg/kg M 001-003 Benzo(ghi)Perylene T207 M105 0.1 mg/kg M 001-003 TPH (C		1				1	
Anthracene T207 M105 0.1 mg/kg U 001-003 Fluoranthene T207 M105 0.1 mg/kg M 001-003 Pyrene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Anthracene T207 M105 0.1 mg/kg M 001-003 Chrysene T207 M105 0.1 mg/kg M 001-003 Benzo(b/k)Fluoranthene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Pyrene T207 M105 0.1 mg/kg M 001-003 Indeno(123-cd)Pyrene T207 M105 0.1 mg/kg M 001-003 Dibenzo(ah)Anthracene T207 M105 0.1 mg/kg M 001-003 Benzo(ghi)Perylene T207 M105 0.1 mg/kg M 001-003 PAH(total) T207 M105 0.1 mg/kg U 001-003 TPH (1					
Fluoranthene T207 M105 0.1 mg/kg M 001-003 Pyrene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Anthracene T207 M105 0.1 mg/kg M 001-003 Chrysene T207 M105 0.1 mg/kg M 001-003 Benzo(b/k)Fluoranthene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Pyrene T207 M105 0.1 mg/kg M 001-003 Indeno(123-cd)Pyrene T207 M105 0.1 mg/kg M 001-003 Dibenzo(ah)Anthracene T207 M105 0.1 mg/kg M 001-003 Benzo(ghi)Perylene T207 M105 0.1 mg/kg M 001-003 PAH(total) T207 M105 0.1 mg/kg U 001-003 TPH (C6-C10) T54 M105 0.10 mg/kg N 001-003 TPH		+					
Pyrene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Anthracene T207 M105 0.1 mg/kg M 001-003 Chrysene T207 M105 0.1 mg/kg M 001-003 Benzo(b/k)Fluoranthene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Pyrene T207 M105 0.1 mg/kg M 001-003 Indeno(123-cd)Pyrene T207 M105 0.1 mg/kg M 001-003 Dibenzo(ah)Anthracene T207 M105 0.1 mg/kg M 001-003 Benzo(ghi)Perylene T207 M105 0.1 mg/kg M 001-003 PAH(total) T207 M105 0.1 mg/kg U 001-003 TPH (C6-C10) T54 M105 0.10 mg/kg N 001-003 TPH (C10-C21) T8 M105 1 mg/kg N 001-003		+					
Benzo(a)Anthracene T207 M105 0.1 mg/kg M 001-003 Chrysene T207 M105 0.1 mg/kg M 001-003 Benzo(b/k)Fluoranthene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Pyrene T207 M105 0.1 mg/kg M 001-003 Indeno(123-cd)Pyrene T207 M105 0.1 mg/kg M 001-003 Dibenzo(ah)Anthracene T207 M105 0.1 mg/kg M 001-003 Benzo(ghi)Perylene T207 M105 0.1 mg/kg M 001-003 PAH(total) T207 M105 0.1 mg/kg U 001-003 TPH (C6-C10) T54 M105 0.10 mg/kg N 001-003 TPH (C10-C21) T8 M105 1 mg/kg N 001-003		+					
Chrysene T207 M105 0.1 mg/kg M 001-003 Benzo(b/k)Fluoranthene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Pyrene T207 M105 0.1 mg/kg M 001-003 Indeno(123-cd)Pyrene T207 M105 0.1 mg/kg M 001-003 Dibenzo(ah)Anthracene T207 M105 0.1 mg/kg M 001-003 Benzo(ghi)Perylene T207 M105 0.1 mg/kg M 001-003 PAH(total) T207 M105 0.1 mg/kg U 001-003 TPH (C6-C10) T54 M105 0.10 mg/kg N 001-003 TPH (C10-C21) T8 M105 1 mg/kg N 001-003	•						
Benzo(b/k)Fluoranthene T207 M105 0.1 mg/kg M 001-003 Benzo(a)Pyrene T207 M105 0.1 mg/kg M 001-003 Indeno(123-cd)Pyrene T207 M105 0.1 mg/kg M 001-003 Dibenzo(ah)Anthracene T207 M105 0.1 mg/kg M 001-003 Benzo(ghi)Perylene T207 M105 0.1 mg/kg M 001-003 PAH(total) T207 M105 0.1 mg/kg U 001-003 TPH (C6-C10) T54 M105 0.10 mg/kg N 001-003 TPH (C10-C21) T8 M105 1 mg/kg N 001-003	, ,	1					
Benzo(a)Pyrene T207 M105 0.1 mg/kg M 001-003 Indeno(123-cd)Pyrene T207 M105 0.1 mg/kg M 001-003 Dibenzo(ah)Anthracene T207 M105 0.1 mg/kg M 001-003 Benzo(ghi)Perylene T207 M105 0.1 mg/kg M 001-003 PAH(total) T207 M105 0.1 mg/kg U 001-003 TPH (C6-C10) T54 M105 0.10 mg/kg N 001-003 TPH (C10-C21) T8 M105 1 mg/kg N 001-003	,	1					
Indeno(123-cd)Pyrene T207 M105 0.1 mg/kg M 001-003	` '	+					
Dibenzo(ah)Anthracene T207 M105 0.1 mg/kg M 001-003 Benzo(ghi)Perylene T207 M105 0.1 mg/kg M 001-003 PAH(total) T207 M105 0.1 mg/kg U 001-003 TPH (C6-C10) T54 M105 0.10 mg/kg N 001-003 TPH (C10-C21) T8 M105 1 mg/kg N 001-003	· · · · ·	_					
Benzo(ghi)Perylene T207 M105 0.1 mg/kg M 001-003 PAH(total) T207 M105 0.1 mg/kg U 001-003 TPH (C6-C10) T54 M105 0.10 mg/kg N 001-003 TPH (C10-C21) T8 M105 1 mg/kg N 001-003	` , ,	1					
PAH(total) T207 M105 0.1 mg/kg U 001-003 TPH (C6-C10) T54 M105 0.10 mg/kg N 001-003 TPH (C10-C21) T8 M105 1 mg/kg N 001-003	, ,	_					
TPH (C6-C10) T54 M105 0.10 mg/kg N 001-003 TPH (C10-C21) T8 M105 1 mg/kg N 001-003							
TPH (C10-C21) T8 M105 1 mg/kg N 001-003	, ,	_					
	TPH (C10-C21)	T8	M105	1	mg/kg	N	001-003
Total Petroleum Hydrocarbons		1					
Moisture T277 AR 0.1 % N 001-003	*	+					
Moisture @ 105 C T162 AR 0.1 % N 001-003						1	

Contaminant Analysis of Samples

The Model Procedures of CLR 11 provide guidance on key information sources with respect to potential contamination arising from past land uses of a site. In particular, the now withdrawn CLR (Environment Agency 2002b), the DoE Industry Profile documents and ISO10381-5 provide good summaries of priority pollutants for UK sites. Additionally, the Environment Agency (2004b) has produced a list of priority pollutants for ecological risk assessment. These documents have been used, with the findings of the Phase 1 investigation, to scope the analyses of chemicals of potential concern. It should be noted that whilst CLR 8 was withdrawn in August 2008 it was not replaced and its findings are still considered useful.

Generic Risk Assessment Criteria for Human Health

Generic assessment criteria (GAC) are criteria derived using largely generic assumptions about the characteristics and behaviour of sources, pathways and receptors. These assumptions will be conservative in a defined range of conditions. The Contaminated Land Exposure Assessment (CLEA) framework uses Soil Guideline Values (SGV) in assessing risks to human health from exposure to soils contaminated with selected contaminants.

The original Soil Guideline Values were all withdrawn in August 2008 and the Agency has started a programme of publishing replacements using its 'new approach' which involves a number of changes to the way exposure is assessed. This was started using the CLEA 1.04 software. The current version is CLEA 1.06.

A significant change in the new approach is to publish SGVs only at 6% soil organic matter (SOM) content. This appears to be counter productive because in cases where the SGV varies with the SOM, the published SGV report states that "at a lower SOM, they may not be sufficiently protective". The SGV introduction report Using Soil Guideline Values states that in such circumstances a new GAC can be produced by adjusting the SGV.

Furthermore, the SGVs are no longer published for the residential without plant uptake land use.

Consequently, the approach taken by Build Vison is to take the various input parameters from the SGV reports and produce GACs for various SOM and for the residential without plant uptake land use, using CLEA 1.06. The GACs adopted for the standard CLEA land uses are given in Table A together with the source of the GAC. The table also lists GACs for open space (see below).

The absence of published SGVs for certain chemicals of potential concern has been addressed by the derivation of GAC using generic assumptions about the characteristics and behaviour of sources, pathways and receptors and the CLEA 1.06 software. Input data have been derived wither from published GAC lists (EIC/AGS/CL:AIRE and LQM/CIEH) or by inhouse research of the recommended data sources.

Please note also that CLEA 1.06 allows for other variations, most notably of soil type (9 options) and building type (5 residential options). The defaults are a sandy loam soil, a small terraced house in the residential setting and a pre-1970s office block in the commercial setting. These are generally conservative and the resultant SGV/GAC are protective of other combinations (unlike the default SOM mentioned above). It is not practical to include all

permutations in Table A and in the cases where specific GACs have been derived, this is referred to in the text of the report and the relevant values included in the assessment tables.

Lead is a special case as the former SGV was not based on the CLEA model, but equations utilising blood lead concentrations. There is currently no guidance on how to risk assess lead but it is understood that a new methodology is being formulated which will allow the use of CLEA. Consequently, the former SGVs for lead have been retained until this has been clarified.

Further details including data sources can be obtained on request.

Human Health GAC's for Soil

							Human Health (Generic Assessm	ent Criteria (mg	/kg)						
Contaminant	Source of GAC	Human health- residential with plant uptake (1% SOM)	Human health- residential with plant uptake (2.5% SOM)	Human health- residential with plant uptake (6% SOM)	Human health- residential without plant uptake (1% SOM)	Human health- residential without plant uptake (2.5% SOM)	Human health- residential without plant uptake (6% SOM)	Human health- allotments (1% SOM)	Human health- allotments (2.5% SOM)	Human health- allotments (6% SOM)	Human health- commercial (1% SOM)	Human health- commercial (2.5% SOM)	Human health- commercial (6% SOM)	Human health- open space (1% SOM)	Human health- open space (2.5% SOM)	Human health- open space (6% SOM)
General Suite				Default for SGV						Default for SGV			Default for SGV			
Arsenic	SGV report + CLEA 1.06	32	32	32	35	35	35	43	43	43	640	640	640	590	590	0 590
Boron	LQM/CIEH + CLEA 1.06	290	290	290	1000	1000		45	45					45000		
Cadmium	SGV report + CLEA 1.06	11	11	11	85	85	85	1.9	1.9	2	230	230	230	860	860	
Chromium (III)	LQM/CIEH + CLEA 1.06	3000	3000	3000	3000	3000	3000	35000	35000				30000	720000	72000	
Chromium (VI)	LQM/CIEH + CLEA 1.06	4.3	4.3	4.3	4.3	4.3		2.2	2.2					4400		
Copper	LQM/CIEH + CLEA 1.06	2300	2300	2300	6200	6200		520	520					400000		
ead	SGV 10 (old method)	450	450	450	450	450		450	450					450		
ead Mercury, inorganic	CLEA 1.06 (not yet in use)	220 170	220 170	220	220 240			590 80	590					11000 9900		
viercury, morganic Viercury elemental	SGV report + CLEA 1.06 SGV report + CLEA 1.06	0.17	0.42	170 1.0	0.17	0.42		4.3	80 11					4.3		
Mercury Methyl	SGV report + CLEA 1.06	7.4	9.6	1.0	8.4	11		7.9	8.0					180		
Nickel	SGV report + CLEA 1.06	130	130	130	130			230	230					38000		
Selenium	SGV report + CLEA 1.06	350	350	350	600	600		120	120					29000		
Zinc Zinc	LQM/CIEH + CLEA 1.06	3700	3700	3700	40000	40000	40000	620	620			670000	670000	1000000		
Cyanide (free)	CLEA 1.06	750	750	750	760	760	760	2300	2300	2300	16000	16000	16000	21000	21000	
Phenol	SGV report + CLEA 1.06	180	290	420	310			66	140					3000		
Acenaphthene	LQM/CIEH + CLEA 1.06	210	480	1000	2000	3100		34	85					39000		
Acenaphthylene	LQM/CIEH + CLEA 1.06	170	400	850	2000	3000		28	69					39000		
Anthracene	LQM/CIEH + CLEA 1.06	2300	4900	9200	20000	22000		380	950					200000		
Benzo(a)anthracene	LQM/CIEH + CLEA 1.06	3.1	4.7	5.9	3.7	5.2		2.5	5.5					89		
Benzo(a)pyrene Benzo(b)fluoranthene	LQM/CIEH + CLEA 1.06 LQM/CIEH + CLEA 1.06	0.83 5.6	0.94 6.5	1.0 7.0	1.0 7.0			0.6 3.5	1.2 7.4					13.0 92		
Benzo(ghi)perylene	LQM/CIEH + CLEA 1.06	3.6	46	7.0	7.0 47	7.3 47		3.5 70	120			660		590 590		
Benzo(k)fluoranthene	LQM/CIEH + CLEA 1.06	8.5	9.6	10	10			6.8	14					130		
Chrysene	LQM/CIEH + CLEA 1.06	6.0	8.0	9.3	8.8	9.7		2.6	5.8					130		
Dibenz(ah)anthracene	LQM/CIEH + CLEA 1.06	0.76	0.86	0.9	0.86	0.91	0.93	0.76	1.5	2.3	13	13	13	12.0		
Fluoranthene	LQM/CIEH + CLEA 1.06	260	460	670	970	990	1000	52	130	290	23000	23000	23000	8100	8100	0 8100
·luorene	LQM/CIEH + CLEA 1.06	160	380	780	1900	2500	2900	27	67	160	64000	69000	71000	26000	26000	0 26000
ndeno(123cd)pyrene	LQM/CIEH + CLEA 1.06	3.2	3.9	4.2	4.2	4.4		1.8	3.8					56		
Naphthalene	LQM/CIEH + CLEA 1.06	1.5	3.7	8.7	1.6	3.9		4.1	9.9					13000		
Phenanthrene	LQM/CIEH + CLEA 1.06	92	200	380	840	930		16	38					8100		
Pyrene	LQM/CIEH + CLEA 1.06	560	1000	1600	2300	2400	2400	110	270	620	54000	54000	55000	20000	2000	00 20000
/OCs-BTEX & MTBE Benzene	SGV report + CLEA 1.06	0.08	0.16	0.33	0.27	0.49	1.0	0.017	0.035	0.075	28	50	95	240	240	0 240
Foluene	SGV report + CLEA 1.06	120	270	610	610			22	51					180000		
Ethylbenzene	SGV report + CLEA 1.06	65	150	350	170		840	16	39			1200		81000		
(ylene o-	SGV report + CLEA 1.06	45	110	250	60	140		28	67					150000		
(ylene m-	SGV report + CLEA 1.06	44	100	240	55	130	300	31	74	180	630	1500	3500	150000	150000	
(ylene p-	SGV report + CLEA 1.06	42	98	230	53	130	290	29	70	160	580	1400	3200	150000		
ИТВЕ	EIC/AGS/CLA:IRE + CLEA 1.06	49	84	160	73	120	220	23	44	90	7900	13000	24000	240000	24000	0 240000
TPH Fractions																
FPH ali EC05-EC06	LQM/CIEH + CLEA 1.06	30			30				1700					1000000		
FPH ali >EC06-EC08	LQM/CIEH + CLEA 1.06	73	160	370	73			2300	5600					1000000		
FPH ali >EC08-EC10	LQM/CIEH + CLEA 1.06	19	46	110	19			320	770					41000		
TPH ali >EC10-EC12 TPH ali >EC12-EC16	LQM/CIEH + CLEA 1.06 LQM/CIEH + CLEA 1.06	48 24	120 59	280 140	48 24			2200 11000	4400 13000					41000 41000		
FPH all >EC16-EC35	LQM/CIEH + CLEA 1.06	45000	64000	76000	45000			260000	270000					81000		
FPH ali >EC35-EC44	LQM/CIEH + CLEA 1.06	45000	64000	76000	45000	64000		260000	270000					81000		
PH aro EC05-EC07	LQM/CIEH + CLEA 1.06	65	130	280	260			13	27					180000		
PH aro >EC07-EC08	LQM/CIEH + CLEA 1.06	120	270	610	610	1300		22	51			1900		180000		180000
TPH aro >EC08-EC10	LQM/CIEH + CLEA 1.06	27	65	150	33	81	190	8.6	21					16000		
TPH aro >EC10-EC12	LQM/CIEH + CLEA 1.06	69	160	350	180	420		13	31					16000		
PH aro >EC12-EC16	LQM/CIEH + CLEA 1.06	140	310	590	1250			23	57					16000		
FPH aro >EC16-EC21	LQM/CIEH + CLEA 1.06	250	480	770	1300			46	110					12000		
FPH aro >EC21-EC35	LQM/CIEH + CLEA 1.06	890	1100	1200	1300			370	820					12000		
FPH aro >EC35-EC44	LQM/CIEH + CLEA 1.06	890 1200	1100	1200 1300	1300			370 1200	820 2100					12000		
TPH >EC44-EC70 Dioxins, furans & dioxin-like-PCBs	LQM/CIEH + CLEA 1.06	1200	1300	1300	1300	1300	1300	1200	2100	3000	28000	28000	28000	12000	1200	J 12000
Fotal Dioxins, furans & DL-PCB (aerial dep) Non-dioxin-like PCBs	SGV report + CLEA 1.06	0.0085	0.0087	0.0087	0.0099	0.0099	0.0099	0.0073	0.008	0.0083	0.24	0.24	0.24	0.15	0.1	5 0.15
PCB-28	CLEA 1.06	0.20	0.27	0.32	0.39	0.39	0.39	0.058	0.13	0.23	9.0	9.0	9.0	3		3 3
PCB-52	CLEA 1.06	0.20	0.28	0.34	0.39	0.39		0.062	0.14					3		3 ?
PCB-101	CLEA 1.06	0.34	0.37	0.38	0.39	0.39		0.03	0.53					3		3 ?
PCB-138	CLEA 1.06	0.36	0.37	0.38	0.39	0.39		0.41	0.67					3	;	3 3
PCB-153	CLEA 1.06	0.36	0.38	0.38	0.39	0.39		0.51	0.77					3	;	3 3
PCB-180	CLEA 1.06	0.37	0.38	0.39	0.39	0.39	0.39	0.60	0.87	1.1	9.0	9.0	9.0	3	:	3 3
NOTES																
f >1,000,000 is calculated, 1,000,000 is adopted.																

Risk Parameter: Human Health - residential with plant uptake (1.0% SOM)

Data set: ALL

Client: Gary Goldrick

Site: Foden Farm Chelford

Job No. 1041

								Soil Type:	Sandy	San	dy Sar	dy													
ΛΙ	II valuos ir	n ma/ka	unloss o	thorwico stat	od			Location:	TP1	TP	2 TF	3													
Al	ii values ii	i ilig/kg	uniess o	therwise stat	eu			Depth:	0.2			2													
				No.																					
	No	Min.	Max.			Cheby																			
Chemicals of Potential Concern	Samples	Value	Value	e >or = GAC	GAC	chev US ₉₅	US ₉₅	Result of Significance Test																	
General Suite Arsenic	3		o I	ol o	32	1 1		Potentially Suitable For Use	<u>8</u>		e l	al		1	1	1	ı			1		ı			
Boron	3	1	1	1 0	290			Potentially Suitable For Use	1	1	1	1													
Cadmium	3		i	1 0) 11			Potentially Suitable For Use	1		1	1													
Chromium (III)	3		3 1	12 0	3000			Potentially Suitable For Use	12		6	3													
Chromium (VI)	3		i	1 0) 4.3			Potentially Suitable For Use	1		1	1													
Copper	3	(5 2	25 0	2300			Potentially Suitable For Use	25		19	6													
Lead	3	1!	5 6	53 0	450			Potentially Suitable For Use	63		30	15													
Lead	3	1!	5 6	53 0	220			Potentially Suitable For Use	63		30	15													
Lead (log)	3	1.176			2.3424			Potentially Suitable For Use	1.7993																
Mercury, inorganic	3	0.00	0.00		170			Potentially Suitable For Use	0.001	_	0.0														
Mercury elemental	3	0.00						Potentially Suitable For Use	0.001						1										
Mercury Methyl	3	0.00		_	7.4			Potentially Suitable For Use	0.001	_	0.0	2		1											
Nickel Selenium	3	 	3 1	11 0	350			Potentially Suitable For Use Potentially Suitable For Use	11	_	7	3			1			-	-		-				
Zinc	3	20	7	71 0				Potentially Suitable For Use	71		59	29		+	 	 									
Cyanide (free)	3		il '	1 0	750			Potentially Suitable For Use	1	1	1	1	+	+	1		+	+		 			 		
Phenol (total)	3	<u> </u>	1	1 0	180			Potentially Suitable For Use	1	1	1	1		†	1	† †									
Acenaphthene	3	0.	1 0.	.1 0	210			Potentially Suitable For Use	0.1	1	0.1	0.1		1	1		1								
Acenaphthylene	3	0.1		.1 0	170			Potentially Suitable For Use	0.1	_		0.1													
Anthracene	3	0.1						Potentially Suitable For Use	0.1			0.1													
Benzo(a)anthracene	3	0.			3.1			Potentially Suitable For Use	0.2	_		0.1													
Benzo(a)pyrene	3	0.1		.5 0	0.83			Potentially Suitable For Use	0.2			0.1		1	1										
Benzo(b)fluoranthene	3	0.3		1 0	5.6			Potentially Suitable For Use	0.4			0.3			1										
Benzo(ghi)perylene	3	0.1		.3 0	8.5			Potentially Suitable For Use	0.1	_		0.1		1											
Benzo(k)fluoranthene Chrysene	3	0		5 0	0 8.5			Potentially Suitable For Use Potentially Suitable For Use	0.4			0.3			1			-	-		-				
Dibenz(a,h)anthracene	3	0.		-	0.76	1		Potentially Suitable For Use	0.2			0.1			1										
Fluoranthene	3	0.3			260			Potentially Suitable For Use	0.6	_		0.3		1											
Fluorene	3	0.1			160			Potentially Suitable For Use	0.1	_		0.1													
Indeno(1,2,3,cd)pyrene	3	0.		.3 0	3.2			Potentially Suitable For Use	0.1		0.3	0.1													
Napthalene	3	0.0	0.0	01 0	1.5			Potentially Suitable For Use	0.01	0	.01 0	.01													
Phenanthrene	3	0.1			92			Potentially Suitable For Use	0.2			0.1													
Pyrene	3	0.3	3 1.	.2 0	560			Potentially Suitable For Use	0.5	<u> </u>	1.2	0.3													
VOCs-BTEX & MTBE Benzene	2	0.00	0.00)1 0	0.08			Datantially Suitable For Use	0.001	Ι ο ι	001 0.0	001					I					ı			
Toluene	3	0.00	0.00		120			Potentially Suitable For Use Potentially Suitable For Use	0.001		001 0.0														
Ethylbenzene	3	0.00	0.00) 65			Potentially Suitable For Use	0.001												-			-	
Xylene o-	3	0.00	0.00	_) 45			Potentially Suitable For Use			001 0.0			1	1										
Xylene m-	3	0.00	0.00					Potentially Suitable For Use			0.001														
Xylene p-	3	0.00	0.00	01 0	42			Potentially Suitable For Use	0.001																
MTBE	3	0.00	0.00	01 0) 49			Potentially Suitable For Use	0.001	0.0	0.0	001													
TPH Fractions	T -		. 1											_	T										
TPH ali EC05-EC06 TPH ali >EC06-EC08	3				30			Potentially Suitable For Use	0.1			0.1												_	
TPH ali >EC06-EC08	3	0.1) 19			Potentially Suitable For Use Potentially Suitable For Use	0.1			0.1		-	-	-		-						-	
TPH ali >EC10-EC12	3		. <u>0.</u> 1	3 0) 48			Potentially Suitable For Use	1	1	3	1	-	+	 			+	+					+	
TPH ali >EC12-EC16	3		it	3 n) 24			Potentially Suitable For Use	1	1	3	1		+	 			+							
TPH ali >EC16-EC35	3		3 2	26 0				Potentially Suitable For Use	19	1		13		†	1	† †									
TPH ali >EC35-EC44	3			23 0				Potentially Suitable For Use	18			12		1	1		1								
TPH aro EC05-EC07	3	0.1) 65			Potentially Suitable For Use	0.1			0.1													
TPH aro >EC07-EC08	3	0.1			120			Potentially Suitable For Use	0.1	_		0.1													
TPH aro >EC08-EC10	3	0.1	1 0.	.1 0				Potentially Suitable For Use	0.1		0.1	0.1													
TPH aro >EC10-EC12	3	<u> </u>	!	3 0	69			Potentially Suitable For Use	1	<u> </u>	3	1		1	1										_
TPH aro >EC12-EC16	3			3 0	140			Potentially Suitable For Use	1	-	3			-	<u> </u>									-	
TPH aro >EC16-EC21	3		<u> </u>	3 0	250			Potentially Suitable For Use	1		3	10		-											
TPH aro >EC21-EC35 TPH aro >EC35-EC44	3			23 0 23 0	890			Potentially Suitable For Use Potentially Suitable For Use	18 18			12		+	1										
TPH ard >EC35-EC44 TPH >EC44-EC70	3			26 0	1200			Potentially Suitable For Use	18			13		+	1			+			-				
Dioxins, furans & dioxin-like-PCBs	U	<u> </u>	<u>, </u>		1200			n oteritiany suitable FOI Use	19		20	10		1	1										
Total Dioxins, furans & DL-PCB																	1				T	T		T	
(aerial dep)	0	(0 0	0.0085					1															
Non-dioxin-like PCBs															•	·									
PCB-28	0)	0 0	0.2																				
PCB-52	0	()	0 0	0.2																				
PCB-101	0)	0 0	0.34																				
PCB-138	0	()	0 0	0.36]								
PCB-153	0)	0 0	0.36					1				+	 										
PCB-180	0	(ון	UJ 0	0.37								1												

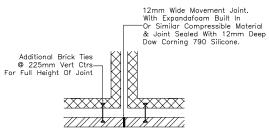
-		DHI Excavations Ltd ction Business Park, Rake Lane, Swinton, Manchester M27		Serial No. DHI/ 00031	9.
-	D	uty of Care - Controlled Waste Transfer No	te	41201.	Officia
Descript of the wa	tion	1. How is the waste contained? 2. Loose Skips Sacks Drun 2. Describe the waste being transferred: 3. Quantity 2000 Kg/(Ionne)/m3/sac4. Analysis attached / not attached (delete as nece		Specify): INEXT SPAC. assification code: 17-05-04- er (specify):	use on
Producer the wast	te	Full name (print): CNC CONSTROX Company name, address and postcode: 324 Which of the following are you? (please tick one Waste producer	TON: LTT STYNL RO or more boxes Vaste collection/	s) disposal authority Broker	
		Licence / Carrier number(s): C	xempt from can	rier registration	-
Carrier of the waste	3	Company name, address and postcode: Junct Swinton, Manchester M27 8LR Which of the following are you? (please tick one □ Waste collection authority □ Waste disp Registered carrier (give number): EAN/98□ Exempt from registration (give reason):	or more boxes)		
First transfer (producer to carrier)	3.	Place of transfer: SANDRINCHAM RO _ Date of transfer: 10/6/13 ~ 10/6/ (for multiple transfers give between dates, see not Name and address of broker arranging transfer (if Producers representatives: Name (print): CARY GO LORICLE	CHEAOLE (14. es) applicable): Carriers represe	entatives: RAY Clook	
isposer of he waste	3.	Full name (print): P. CASE1 ENVIRO Company name, address and postcode: Molcoe Which of the following are you? (please tick box) Holder of waste disposal / management licence	CTD . QUARRY . 1 (give number):	NSTLEY - M29 70W.	
11 100 100 100 100 100 100 100 100 100		Exempt from licence requirements (give reason)			
Second ransfer	2. E (f 3. N 4. C	Date of transfer: Mee (ex QuARLY, ASTU) Date of transfer: 10/6/13 TO 10/1 or multiple consigments give between dates) lame and address of broker arranging transfer (if apartiers representatives:	CY, MZ9 5/14: plicable):	76W.	
carrier to isposer)	N	gned: DHT Event Sig	sposers represe time (print): A ned: A	J. INC.	

	1774	DHI Excavations Ltd Walkden Road, Worsley, Manchester M28 7QH	4	Serial No. DHI/	
Du	ty of (Care - Controlled Waste Transfer	Note	SIC Code: 41202.	Official use only
Description of the waste	2. [How is the waste contained? Y Loose Skips Sads Dru Describe the waste being transferred: Quantity 400 kg (Tonnes) m3 / sack Analysis attached / not attached (delete as nec	Classif S / drums / oth er (sp	cify): Columination code: 17-05-04 Decify):	
	2. C	ull name (print): GNL CONSTE Company name, address and postcode: 329	3 SMAL (D 2D, GATLEY, CHESHIDE	=
		Vhich of the following are you? (Please tick on	TOTAL TOTAL	nada (Marana II - Madalana	
Producer	Α	Waste producer Waste importer		n/disposal authority 🔲 Broker	
of the waste	В	Holder of disposal / management licence Licence / Carrier number(s):		arrier d by:	1
	С	Exempt from licensing requirements Reason:			
Carrier of the waste	Ø Re	ompany name, address and postcode: 177 Was egistered carrier (give number): CB/BM3787 have fulfilled our obligations with re-	7KJ		
	2. Da (fo	ace of transfer: LAPWING LANE, Late of transfer: 15[7]13 To some multiple transfers give between dates, see not transfer of transfer of transfer of transfer (31 5 13 , otes)	NOTON, HOLMES CHARELY	
First Transfer (producer to carrier)	- Na	oducers representatives: time (print): GAPY GOLDRICL ned: CaCLL	Carriers represer Name (print): Signed:	natives SEAN KINGSTON	and the second
	L. Ful	I-name (print) GNL CONST	MCTION -		
	2 Co	impany name, address and postcode:	AS SECT B	The supplies of the supplies o	
Disposer of		high of the following are you? (Please tick one Holder of waste disposal / management licens		Ala	
the waste		Exempt-from licence requirements (give reaso	Issued by:		
	2. Dat	te of transfer: SANPRINGHAM AVE te of transfer: 15 7 13 TO TO multiple consignments give between dates) the and address of broker arranging transfer (in	3 8 13 ,	HULME, CHESHIPE	
Second Transfer (carrier to disposer)	Nar Sign	riers representatives: me (print): SEAN KINGSTON ned: npany name: DHI Excavations Ltd	Signed: C	natives TARY GOLDRICCI ELFELO FILL FILL FILL FILL FILL FILL FILL FI	

APPENDIX B

GAS PROTECTION MEASURES

§ Foundation Layout Drawings


5230 5230 \leftarrow Indicates span Indicates span

Foundation Layout

External Wall - 352.5mm Internal Party Wall - 300mm

Wall Finishes To Be 200mm x 40mm x 1.5mm _Galvanised Mild Steel Strip Tie In Alternate Courses. Discontinous At Joint
Position Using Stop
Beads With A Mastic Sealant. \times

Max spacing to be approx 9 metres if Stranlite blocks used.

Typical Movement Joint in External Wall.

Max spacing to be 12m or 6m from a corner
(For positions refer to Architect Drawings).

Foundation Depths

All Structural Concrete To Be

All Foundations depths indicated on plan are for minimum depths Foundations are to go down deeper if stiff clay isnt encounterd at depths shown Min Depth Of All Foundations To Be 900mm From External Level.

Gas Membrane To Be 2000Gauge Visqueen. All joints and service entries to be gas taped

In Accordance With Building Regulations Approved Document C4. Two Opposing External Walls Should Have Ventilation Openings Placed So That The Ventilating Air Will Have A Free Path Between Opposite Sides And To All Parts. The Openings Should Be Large Enough To Give An Actual Opening Of At ust Equivalent To 1500mm For Each Metre Run Of Wall. For Position Of Air Vents Refer To Architectural Elevations.

AS BUILT.

This drawing is based on the latest issue construction drawings modified

nformation has not been verified by

Build Vision Consulting Fngineers and cannot be guaranteed correct. Build Vision Consulting Engineers do

not accept any responsibility for As Built information provided that does

ot comply with current design guides

AS-BUILT RECORD DRAWING :

as necessary from information

supplied by the contractor. This

Designated Mix RC35

All temporary works and propping must be designed and detailed by the general contractor, calculations etc. to be approved by the Engineer. If loadings are required then ask.

Any drawing discrepancies shown are to be reported to the Engineer prior to

All dimensions & setting out shall be in accordance with the Architect's details and shall be verified by the contractor prior to construction.

NOTES

Do not scale from this drawing.

Health and Safety Consideration has been made to risks associated within the design, some elements shown on this drawing are in excess of 20kg, some risk still exists and cannot be designed out — ensure the health & safety file has been read. Contractor to ensure these risks are dealt with in the correct manner.

Pads & Strip Foundation
Any foundation levels shown on this drawing are approximate and are dependent on the foundation strata at the depth shown being capable of safely sustaining a nett bearing pressure of 80kN/m².

Reduce level dig remove all deleterious material under the building footprint. Ensure reduce dig is to a consistent level to all areas.

Local soft spots to be reported to Engineer.

If any foundation formation surface is to remain open for in excess of 24 hours the surface must be seeded with 50mm concrete blinding, irrespective of whether. The top surface of the blinding concrete shall be finished at the intended foundation formation

All structural/reinforced concrete shall be Grade RC35 All mass fill concrete shall be grade FND2

All concrete mixes to be in accordance with BS EN 206-1 and complementary BS 8500

Min. concrete cover to all reinforcement to be 40mm unless noted otherwise.

Substructure brickwork to be in concrete common bricks having a minimum crushing strength of 20N/mm² water absorption of 10%

Substructure blockwork to be dense aggregate blockwork $>/1500 {\rm kg/m^3}$ minimum compressive strength $>/7.0 {\rm N/mm^2}$.

Mortar to be class iii above ground, class ii below dpc. Colour to external mortar to Architects spec.

All wall ties to be stainless steel Type 1 for cavities greater than 100mm or Type 2 otherwise, in accordance BS DD140 part 2, BS5628 parts 1,2&3.

6KN/M run

Pre-cast floor units are to be designed for the following:
Superimposed 1.500 Studded Partitons 1.000 1.50KN/Msq. 1.00KN/Msq. 1.75KN/Msq.

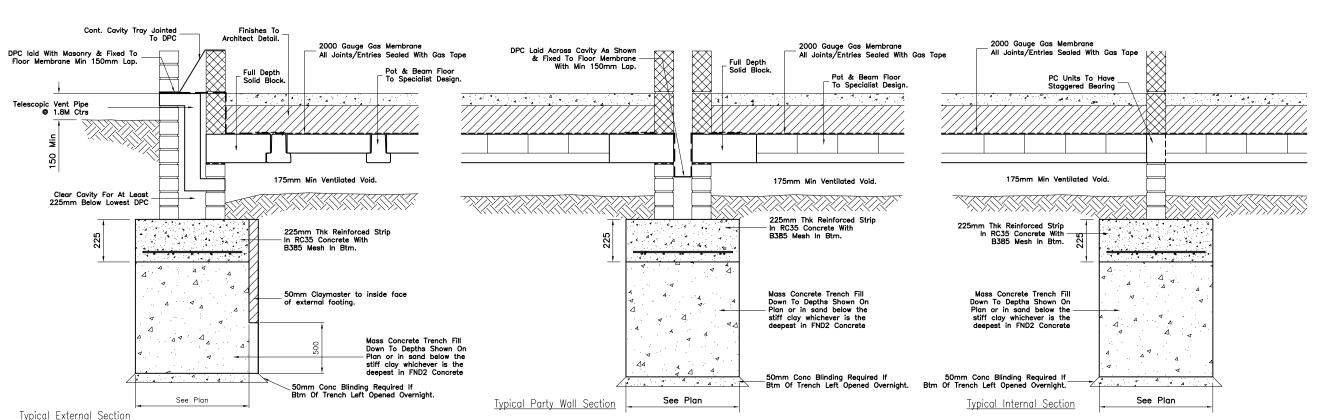
Finishes

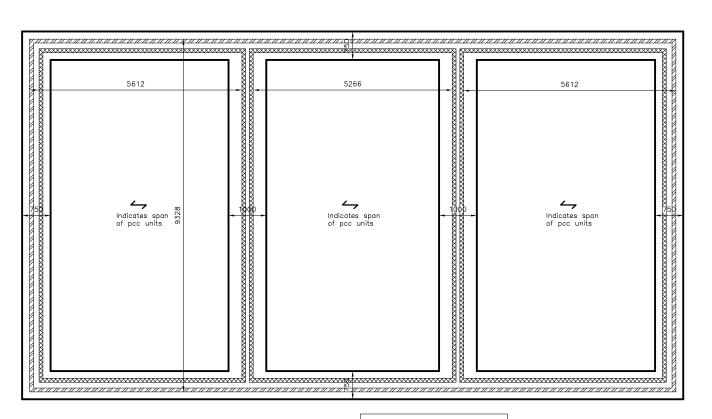
Block Wall

As Built Issued for Construction Rev Date By Checked Remarks

> Sandringham Road Cheadle Hulme

Wiggett Construction Ltd


Foundation Layout Semi Detached Block


1037/100 В Nov12 1.0050.00A1

Consulting Engineers

Suite 1, Westleigh House, Wakefield Road, Denby Dale, Huddersfield HD8 8QJ Tel. 01484 868257 email: mail@byconsulting.co.u

Anticipated depth from FFL to base of Mass Concrete is 2.50 metres.

Foundation Layout

External Wall — 352.5mm Internal Party Wall — 300mm

200mm x 40mm x 1.5mm _Galvanised Mild Steel Strip Tie In Alternate Courses. Wall Finishes To Be Discontinous At Joint
Position Using Stop.
Beads With A Mastic Sealant. \times

Typical Movement Joint in Blockwork. Max spacing to be approx 9 metres if Stranlite blocks used.

12mm Wide Movement Joint. With Expandafoam Built In —Or Similar Compressible Material & Joint Sealed With 12mm Deep Dow Corning 790 Silicone. Additional Brick Ties @ 225mm Vert Ctrs-For Full Height Of Joint

Typical Movement Joint in External Wall. Max spacing to be 12m or 6m from a corner (For positions refer to Architect Drawings).

Foundation Depths Anticipated depth from FFL to base of Mass Concrete is 2.50 metres.

Designated Mix RC35

are for minimum depths Foundations are to go down deeper if stiff clay isnt encounterd at depths shown Min Depth Of All Foundations To Be 900mm From External Level

Visqueen. All joints and service entries to be gas taped

Document C4. Two Opposing External Walls Should Have Ventilation Openings Placed So That The Ventilating Air Will Have A Free Path Between Opposite Sides And To All Parts. The Openings Should Be Large Enough To Give An Actual Opening Of At Least Equivalent To 1500mm For Each Metre Run Of Wall. For Position Of Air Vents Refer To Architectural Elevations.

AS BUILT.

AS-BUILT RECORD DRAWING : his drawing is based on the latest issue construction drawinas modified as necessary from information supplied by the contractor. This information has not been verified by cannot be guaranteed correct. Build Vision Consulting Engineers do not accept any responsibility for As Built information provided that does

All Structural Concrete To Be

All Foundations depths indicated on plan

Gas Membrane To Be 2000Gauge

In Accordance With Building Regulations Approved

Build Vision Consulting Engineers and not comply with current design guides

This drawing is to be read in conjunction with all other relevant drawings and their

NOTE

accordance with the Architect's details and shall be verified by the contractor prior to

All temporary works and propping must be designed and detailed by the general contractor, calculations etc. to be approved by the Engineer. If loadings are required

Any drawing discrepancies shown are to be reported to the Engineer prior to construction.

Health and Safety
Consideration has been made to risks
associated within the design, some elements
shown on this drawing are in excess of
20kg, some risk still exists and cannot be
designed out — ensure the health & safety
file has been read. Contractor to ensure
these risks are dealt with in the correct
manner.

Pads & Strip Foundation
Any foundation levels shown on this drawing are approximate and are dependent on the foundation strata at the depth shown being capable of safely sustaining a nett bearing pressure of 80kN/m².

Reduce level dig remove all deleterious material under the building footprint. Ensure reduce dig is to a consistent level to all areas.

Local soft spots to be reported to Engineer

If any foundation formation surface is to remain open for in excess of 24 hours the surface must be sealed with 50mm concrete blinding, irrespective of whether. The top surface of the blinding concrete shall be finished at the intended foundation formation level.

All structural/reinforced concrete shall be Grade RC35 All mass fill concrete shall be grade FND2

All concrete mixes to be in accordance with BS EN 206-1 and complementary BS 8500 parts 1 & 2.

Min. concrete cover to all reinforcement to be 40mm unless noted otherwise.

Substructure brickwork to be in concrete common bricks having a minimum crushing strength of 20N/mm² water absorption of 10%

Substructure blockwork to be dense aggregate blockwork $>/1500 {\rm kg/m^3}$ minimum compressive strength $>/7.0 {\rm N/mm^2}$.

Mortar to be class iii above ground, class ii below dpc. Colour to external mortar to Architects spec.

All wall ties to be stainless steel Type 1 for cavities greater than 100mm or Type 2 otherwise, in accordance BS DD140 part 2, BS5628 parts 1,2&3.

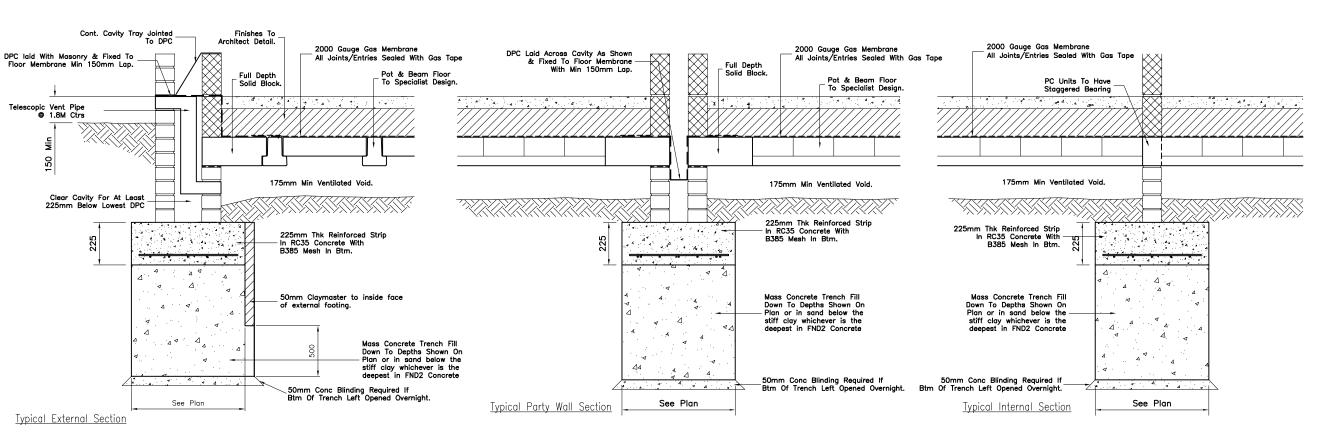
6KN/M run

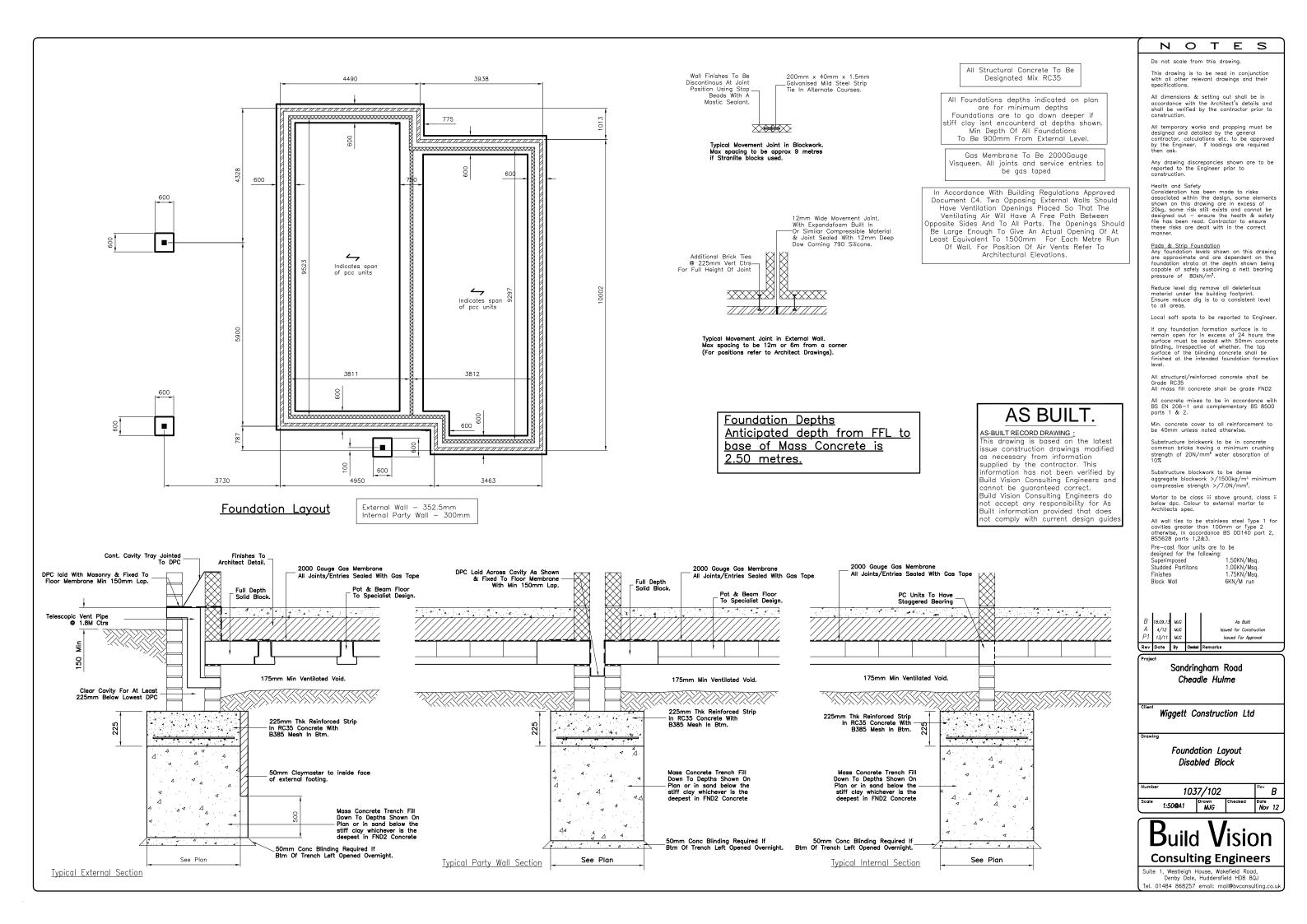
Pre-cast floor units are to be designed for the following:
Superimposed 1.50KN/Msq. Studded Partitons 1.00KN/Msq. 1.75KN/Msq.

Block Wall

As Built Issued for Construction Rev Date By Checked Remarks

> Sandringham Road Cheadle Hulme


Wiggett Construction Ltd


Foundation Layout Terrace Block

В 1037/101 Nov 12 MJG 1:50@A1

Consulting Engineers

Suite 1, Westleigh House, Wakefield Road, Denby Dale, Huddersfield HD8 8QJ Tel. 01484 868257 email: mail@byconsulting.co.u

